
Software Testing Plan
Version 1

Date: November 8th, 2024
Team Name: FairyMander
Sponsor: Bridget Bero
Professor: Isaac Shaffer

Mentor: Vahid Nikoonejad Fard

Team Members:
Izaac Molina (Team Lead)

Dylan Franco
Jeysen Angous
Sophia Ingram
Ceanna Jarrett



Table of Contents

1 Introduction 3
2 Unit Testing 4

2.1 District Generator 4
2.1.1 .__init__() 4
2.1.2 ._load_state_gdf() 5
2.1.3 ._get_random_partition() 6
2.1.4 ._generate_maps() 6
2.1.4 ._run() and ._run_and_save() 7

2.2 Fairness Metrics 8
2.2.1 calc_*() 8
2.2.2 get_metric_dict() 10

2.3 Folium Converter and Pulling Current Congressional Districts 11
2.3.1 map_to_folium() 11
2.3.2 get_curr_district_file() 11

3 Integration Testing 12
3.1 District Generation, Analysis, and Conversion tests 12

3.1.1 District generation and comparison between two generated plans 12
3.1.2 Comparison between generated district and current district plan 13

4 Usability Testing 13
4.1 Background of End Users 13
4.2 Novelty of Product 14
4.3 Consequences of Bad Design 14
4.4 Testing Plan 14

6 Conclusion 15



1 Introduction
U.S. congressional districts are used to elect members for the House of Representatives. As part
of this process, each state must draw their own congressional district lines, updating them at
minimum every 10 years following the release of the decennial census. Each state individually
decides how the lines will be drawn, and in most states, the drawing is done by the state
legislature. This often results in an issue in the redistricting process known as gerrymandering.
Gerrymandering is the act of drawing district lines in a way that benefits certain political parties;
this leads to underrepresentation and political manipulation. Representatives have the power to
manipulate electoral outcomes during redistricting, thus guaranteeing their electoral success.
This power poses a threat to our democracy, having the potential to make voting obsolete. In
search of a more widespread solution, our team has developed an algorithm for generating voting
districts. We aim to also complete a user-friendly website to educate citizens on how
congressional districts can be created fairly by utilizing our algorithm. The results of running our
algorithm on each state will be added to this website along with a description of what makes
them fair. Overall, we are confident that this algorithm and website will provide a comprehensive
and understandable way to promote civic engagement in the redistricting process.

As with any good software, we aim to test our product using standard software testing
techniques. In software testing, there are three main kinds of tests: unit tests, which aim to test a
highly specific functionality of the product, integration tests, which test systems within the
product and how different components work together, and usability tests, which test how user
friendly and accessible the product is. When combined, these techniques provide a way to assure
a high quality product that fulfills the requirements and maintains high user friendliness.

We aim to implement these techniques to test our algorithm (and the package that surrounds it)
as well as our website. A unit testing suite will be developed for our algorithm, fairness module,
and folium converter. We will also implement an integration test for the general processing of
our package, that is, the upload of state data, a proposed district plan via our algorithm based on
this state data, and an interactable map output based on this plan. Finally, we will conduct
usability testing for our website, as it is critical our site is responsive, easy to use, and
understandable at a 5th grade reading level.

This testing regime fulfills our goal of developing a redistricting algorithm and presenting the
results of this algorithm in an accessible manner. In testing the accuracy of our metrics and
algorithm process, we are ensuring that we are delivering high quality results based on long
withstanding metrics used to evaluate district fairness. On top of this, the nature of this project
necessitates extensive usability testing to ensure that it can effectively reach a wide audience to
inform and promote civic engagement. In this document, we outline our testing plan and how it
will ensure the success and quality of our product.



2 Unit Testing
Unit testing is the “lowest” level of software testing, and consists of testing individual
functionalities within a piece of software. For example, the testing suite for a calculator
application would probably include separate unit tests for adding, subtracting, multiplying, etc. It
is also important to note some key terms related to unit testing, such as equivalence classes,
which are t, boundary values, which are cases at the various extremes of possible input, and
coverage, which is a metric that determines how “covered” the codebase is by its unit tests.
Overall, these tests are critical as they allow developers to ensure that key functionalities of the
product are working as they should be.

Before moving on, we would like to note some key terms related to unit testing:
● Equivalence (Eq.) classes: test cases that belong in one “group” due to their similar

conditions.
● Boundary values: test cases at the extremes of possible input.
● Coverage: a metric used to determine how “covered” a codebase is based on its unit

testing suite. A codebase with better coverage is considered to be better tested.
These terms will be used throughout our discussion of unit testing, and are key for
communicating our unit testing plans.

For our unit testing purposes, we will be using pytest, a common library used for testing python
applications. This package is a standard in python software development, and perfectly fits our
testing needs. It offers a robust suite of assertions which can be used to test a flexible range of
functionalities. Additionally, utilities in its “mocker” offer useful ways to mock dependencies
between modules. Finally, pytest also has built in tools for measuring coverage, ensuring our
codebase will reach the coverage necessary for our testing plan.

Please note, in cases of erroneous input (i.e., the user enters “Hello World” when prompted to
enter a float value) we will be using python typing to force specific types upon calling a method,
allowing us to handle this output.

2.1 District Generator

The core functionality of our application relies on a DistrictGenerator class, which is used to load
state data and produce viable district plans based on this data. This class consists of several
functionalities which will be unit tested thusly:

2.1.1 .__init__()

When initializing a district generator, each parameter will have an acceptable range of values it
can hold. We will unit test the exception handling to ensure that each parameter is in range. The



following table breaks down each parameter and the values that will be used to cover its test
cases.

Parameter Description Selected Value - Eq. class

prefix : str The two letter state abbreviation
(i.e. az, ut, ny, etc.)

‘az’ - prefix is in possible
state prefixes list
‘foo’ - prefix not in possible
state prefixes list

deviation : float The acceptable population
deviation between districts (i.e.
0.05 for 5% population
deviation). Ranges from
(0.005-0.1)

0.05 - acceptable deviation
0.11 - deviation too high
0.004 - deviation too low

steps: int The number of steps to run the
algorithm for. Must be >= 0

1000 - acceptable step count
-1 - step count too low

num_maps: int The number of maps to keep,
keeps the top (num_map) maps.
Ranges from (1-10)

3 - acceptable num maps
0 - num maps too low
11 - num maps too high

opt_metric: str Name of the strategy that will be
used to optimize the districts.
Accepts “compact” and
“competitiveness”

“compact”- acceptable
metric
“foo” - not in possible
metrics

By doing this, we help prevent issues in other methods that could arise from improper values
during initialization.

2.1.2 ._load_state_gdf()

Loads a geopandas dataframe containing census block data corresponding to the prefix used in
initializing the DistrictGenerator (‘az’, ut’, etc.) from our dataset

Selected Values and Eq. classes:

Equivalence Class Selected Values

Dataframe is found DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”

The function should always return a dataframe because we already checked if the state had a
valid prefix in the __init__() method.



2.1.3 ._get_random_partition()

Creates an initial random partition (a gerrychain class) of the state so the algorithm can be
started, where each partition is within the deviation specified in initializing the DistrictGenerator,
and the # of partitions == the # of state districts. Tallies metrics in the partition depending on the
opt metric selected
Selected Values and Eq. classes:

Equivalence Class Selected Values

Standard random partition - compact DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)

Standard random partition - competitiveness DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)

Random partition with low deviation
boundary value (tighter constraints)

DistrictGenerator(prefix = “az”,
deviation=0.008, steps = 1000, num_maps =
3, opt_metric=”compact”)

Random partition on state with islands -
ensure islands do not break the partitioning
process

DistrictGenerator(prefix = “ma”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)

It is worth noting that the output of this method is nondeterministic. Depending on the state as
well as the “luck” of the user, some partition configurations are not possible with certain initial
random draws of the map, but are with others. Since this is impossible to discreetly determine,
we will not be testing for this in our suite.

2.1.4 ._generate_maps()

Uses the initial random partition to step through different map configurations, keeping the top
num_maps for the given optimization metric
Selected Values and Eq. classes:

Equivalence Class Selected Values

Compact DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)

Competitiveness DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)



Low num_maps boundary value DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 1,
opt_metric=”compact”)

High num_maps boundary values DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps =
10, opt_metric=”compact”)

A list of the opt_metrics found during the simulation will be kept as the simulation runs, which
will be used to determine if the method succeeded in keeping the top “num_map” maps.

2.1.4 ._run() and ._run_and_save()

The “conductor” of the DistrictGenerator class, _run() is a public method for generating the
districts and returning them

Equivalence Class Selected Values

Compact DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)

Competitiveness DistrictGenerator(prefix = “az”,
deviation=0.05, steps = 1000, num_maps = 3,
opt_metric=”compact”)

Low deviation boundary value DistrictGenerator(prefix = “az”,
deviation=0.008, steps = 1000, num_maps =
1, opt_metric=”compact”)

High deviation boundary values DistrictGenerator(prefix = “az”,
deviation=0.08, steps = 1000, num_maps =
10, opt_metric=”compact”)

The resulting maps will be evaluated to determine that a correct number of districts were created
and that their populations are within the deviation. Similarly to random_partition, we must also
note here that the result of this function is nondeterministic.

run_and_save() performs run(), but saves the result to the local file system, creating the directory
if it does not exist. In the tests, run() will be called using the first equivalence class.

Equivalence Class Selected Values

Directory doesn't exist, is created run_and_save(“map_dir”, “map_prefix”)



Directory exists, created from previous test run_and_save(“map_dir”, “new_prefix”)

2.2 Fairness Metrics

A critical component of our package is the fairness metrics, which are used to evaluate the maps
we generate. It is essential that these metrics are accurate, as they will be used to make key
decisions related to which maps we will show on our website. As such, we will be particularly
focusing on the accuracy of this module, as failure to do so will not only negatively impact our
project quality, but would be actively harmful in spreading misinformation.

2.2.1 calc_*()

The title of this section, “calc_*” refers to the functions we have developed to calculate various
redistricting fairness metrics from a geopandas dataframe.

For each of these functions, there will be two “base” district plans, one where there is one
district, and one where there are four districts. This ensures that each function can handle edge
cases for states with only one district, an important equivalence class/boundary value. Unless
specified otherwise in the table, these will be the values for the plans. Note that “eth-” denotes
the citizen voting age population of an ethnicity in that district:

one_district_plan = {
'District': [1],
'geometry': [Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])],
'party_rep': [600],
'party_dem': [400],
'eth1_eur': [800],
'eth1_aa': [100],
'eth1_esa': [50],
'eth1_hisp': [30],
'eth1_oth': [20]

}
multiple_district_plan = {

'District': [1, 2, 3, 4],
'geometry': [
Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]),
Polygon([(2, 0), (4, 0), (4, 2), (2, 2)]),
Polygon([(0, 2), (2, 2), (2, 4), (0, 4)]),
Polygon([(2, 2), (4, 2), (4, 4), (2, 4)])

],
'party_rep': [600, 400, 300, 700],



'party_dem': [400, 600, 700, 300],
'eth1_eur': [800, 700, 900, 600],
'eth1_aa': [100, 150, 50, 200],
'eth1_esa': [50, 30, 70, 20],
'eth1_hisp': [30, 40, 20, 10],
'eth1_oth': [20, 80, 10, 70]

}

We summarize the testing plans for each of these functions in the table below, with additional
equivalence classes specified if necessary:

Function Description Additional Eq classes -
selected values

calc_avg_polsby_popper Measure for district
compactness. Ratio between
district area and perimeter.

None

calc_avg_reock Measure for district
compactness. Ratio between
district area and area of
minimum bounding circle.

None

calc_efficiency_gap Measures political
competitiveness based on
wasted votes

Dem advantage - 'party_rep':
[200, 400, 800, 450],
'party_dem': [800, 600, 200,
550]
Rep advantage - 'party_rep':
[800, 600, 200, 550],
'party_dem': [200, 400, 800,
450]

calc_lobsided margin Measures political
competitiveness using the
difference between a party's
average vote share and its
median vote share across all
districts

Dem advantage - 'party_rep':
[400, 450, 800, 850],
'party_dem': [600, 550, 200,
150]
Rep advantage - 'party_rep':
[600, 550, 100, 150],
'party_dem': [400, 450, 900,
850]
One party wins, Dem -
'party_rep': [400],
'party_dem': [600]
(One party win, rep is
covered by the base plan w/



one district)

calc_dissimilarity_indices Measures district minority
representation, each index
indicates how spread out the
minority population is across
the district plan

None

2.2.2 get_metric_dict()

The testing for this function is quite simple, as the function just executes all the calc_* functions
on the given dataframe, returning the results in a dict. We will run the base district plans from
section 2.2.1 and ensure the values are returned properly in a dictionary format.

2.2.3 compare_maps()
In this function, two dataframes are compared for which metric has “better” metrics, which
happens by performing each metric calculation on both maps and comparing them. We will mock
the output of get_metric_dict(), where one returned dictionary will have better values than the
other. These mocked dictionaries are as follows

map_a = {
'Avg Polsby-Popper': 0.75,
'Avg Reock': 0.65,
'Efficiency Gap': -2.0,
'Mean Median Difference': -1.5,
'Lopsided Margin': 4.0,
'Dissimilarity Indices': {

'eth1_aa': 0.20,
'eth1_esa': 0.25,
'eth1_hisp': 0.30,
'eth2_81': 0.18,
'eth1_oth': 0.22

}
}

map_b = {
'Avg Polsby-Popper': 0.60,
'Avg Reock': 0.50,
'Efficiency Gap': -3.5,
'Mean Median Difference': -2.0,
'Lopsided Margin': 6.0,
'Dissimilarity Indices': {



'eth1_aa': 0.25,
'eth1_esa': 0.28,
'eth1_hisp': 0.35,
'eth2_81': 0.20,
'eth1_oth': 0.25

}
}

Equivalence Class Selected Values

Map 1 > Map 2 Map 1 = map_a, Map 2 = map_b

Map 2 > Map 1 Map 1 = map_b, Map 2 = map_a

Map 1 == Map 2 Map 1 = map_a, Map 2 = map_a

2.3 Folium Converter and Pulling Current Congressional Districts

Since these are both fairly small modules, they have combined in this section. We will unit test
our folium converter, which produces an interactive map based for a district plan, as well as our
functionality for pulling a state’s current congressional district data.

2.3.1 map_to_folium()

Given a state prefix and a geopandas dataframe, converts the dataframe into a folium
visualization. These data frames are quite large, so descriptions for the selected values will need
to be generalized for the sake of brevity

Equivalence Class Selected Values

Current district plan Current AZ congressional district map

Generated district plan AZ congressional district map generated from
our DistrictGenerator module

Map has islands Current MA congressional district map

Invalid state plan state prefix = ‘foo’

2.3.2 get_curr_district_file()

Given a state prefix, loads the current congressional district data for that state and returns it as a
geopandas dataframe



Equivalence Class Selected Values

State data exists prefix = ‘az’

State data doesn’t exist prefix = ‘foo’

3 Integration Testing

Integration testing involves testing the interactions between modules in a system to ensure they
all work together properly. Taking our calculator example from earlier, while unit tests would
look at specific functionalities like adding/subtracting/etc., an integration test might look like a
simulated input of different operations (i.e. add, then subtract, then multiply …) to ensure that
each operation is compatible with the others and that all operations function appropriately
together. This is essential to ensuring a system functions as expected and that the system as a
whole can achieve intended results.

Our application has a fairly straightforward system, involving uploading from our data, using
this data to generate districts, evaluating the districts, then potentially saving them. As such, we
do not require an overly robust integration test suite. Nevertheless, we will develop an
integration test suite for this core system flow, with checks at each step to ensure an expected
result is obtained. It is worth noting that due to the nature of our algorithm, the results are hard to
exactly predict as each run will produce nondeterministic results depending on the initial
algorithm configuration. Regardless, we will ensure that the data can be uploaded, then
converted into a district plan within the given population deviation, properly evaluated for
metrics, then saved into the file system.

3.1 District Generation, Analysis, and Conversion tests

In this section, we outline the integration tests we will use to test our python package
functionality. This will be presented as a series of steps

3.1.1 District generation and comparison between two generated plans

The first tests will test “standard” district generation and evaluation, i.e. with middle-range
population deviation and on an average sized state with no islands This will be ran with both
“compact” and “competitiveness” as the optimization metric

1. Initialize DistrictGenerator(prefix = “az”, deviation=0.01, steps = 2000, num_maps = 1,
opt_metric=”compact”)

2. DistrictGenerator.run() is called to generate districts
3. Run get_metric_dict on the generated district plan to get district metrics.
4. Repeat steps 1-3 using “competitiveness” for the opt_metric



5. Run compare_maps() to get the district comparison result.
6. Convert the results from both maps to a folium map using map_to_folium()

We will then run the same tests on “pa” to essentially “stress test” the system, as “pa” is a large,
highly populated state.

3.1.2 Comparison between generated district and current district plan

Similar to above, but involves loading an comparing to a current district plan
1. Initialize DistrictGenerator(prefix = “az”, deviation=0.01, steps = 2000, num_maps = 1,

opt_metric=”compact”)
2. DistrictGenerator.run() is called to generate districts
3. Run get_metric_dict on the generated district plan to get district metrics.
4. Load the current az district map
5. Run compare_maps() to get the district comparison result.
6. Convert the results from both maps to a folium map using map_to_folium()

4 Usability Testing

Usability testing is a crucial step in any software design process as it is focused on the
interactions between the software itself and the end user while ensuring that end users can easily
access the functionality provided by the software. Moreover, usability testing is used to evaluate
the user experience with the website to ensure that the system meets the needs and expectations
of its users. The primary goals of usability testing are to identify any usability issues, gather
feedback regarding the user interface, and most importantly ensure the software meets the needs
and expectations of the end users. To develop an extensive strategy for our software’s usability
testing, the following important factors need to be taken into consideration.

4.1 Background of End Users

Our website “FairyMander”, whose goal is to encompass an educational aspect of the process of
redistricting while making the website clear and easily understandable, is specifically designed
for both the fifth-grade reading level and members of the committee. Given that the website’s
aim is educational, many detailed steps have been taken into consideration in making the
application’s written content suitable for the fifth-grade reading level. This results in not only
helping current voters understand how redistribution is done along with gerrymandering, but it
will also make the application useful in an educational context, enabling the youth to learn about
our democracy. Lastly, our target audience consists of individuals who also want to view a
side-by-side comparison of the Current Congressional Districts in addition to the FairyMandered



Algorithm with the differences in Demographic Distribution in a pie chart form and Fairness
Metrics for district comparisons in all fifty states.

4.2 Novelty of Product

Our website is intended to teach individuals about the redistricting process along with
gerrymandering. Unlike other web applications, FairyMander’s goal is to focus on the
educational aspect which is achieved through an interactive map when hovered over a state, the
state's name, population, and districts are viewable. Furthermore, the website is designed for
users to access any state’s information with ease while providing them with beneficial
educational opportunities and taking user friendliness and ease of navigation into account.

4.3 Consequences of Bad Design

Poor website design including poor navigation, slow-loading pages, broken links, bad content,
and inconsistency will lead to many unintended consequences including errors, driving audiences
away, and negative feedback. Therefore, is it extremely important that our web application is
designed to be user-friendly while keeping in mind that each page should load quickly and
function smoothly which most importantly includes fast loading speeds without any delays when
hovering over or clicking on a state.

4.4 Testing Plan

The purpose of usability testing is to have an extensive understanding of the user experience with
FairyMander, making sure it meets the needs of both the user and the client.

We have decided to have some friends of ours test the website’s functionalities and provide us
with feedback on what they liked and disliked about the website. The main purpose of the testing
phase is to make sure everything on the website works and functions as expected. The first step
of any testing process is to load the website and ensure that the landing page loads correctly and
smoothly with all navigation links included. The tester then has the option to select a state from
either the hamburger drop-down menu or an interactive map, alternatively by scrolling down the
tester can read some basic information about the redistricting process and learn more information
about it. The tester then selects a state of their choice and upon clicking on that state, they are
provided with a side-by-side comparison of the current congressional districts and the
FairyMandered algorithm. Scrolling down, a pie chart of each state is viewable as well along
with Fairness Metrics for both current districts and our redrawn districts. Lastly, the tester has the
option to select another state or can view the glossary where a more in-depth definition will be
provided for a specific term.



6 Conclusion
To conclude, FairyMander is confident that our presented testing plan will result in a bug

free, high quality product. As we have outlined throughout this document, our suite will
thoroughly test the core functionalities of our product using unit and integration tests, as well as
the ease of use of our product via usability testing. Our team has put great effort into ensuring
that all equivalence classes and relevant systems have been covered in the described testing suite,
along with connecting with human testers to ensure a highly usable product. In doing so, we will
confirm that the product is effective, reliable, and presents redistricting plans in an approachable
way. Testing is an essential part of the software development process, and we are excited to
further prove the quality of our product through fulfilling this testing plan.


